Species differences in the formation of vabicaserin carbamoyl glucuronide.
نویسندگان
چکیده
Vabicaserin is a potent 5-hydroxtryptamine 2C full agonist with therapeutic potential for a wide array of psychiatric disorders. Metabolite profiles indicated that vabicaserin was extensively metabolized via carbamoyl glucuronidation after oral administration in humans. In the present study, the differences in the extent of vabicaserin carbamoyl glucuronide (CG) formation in humans and in animals used for safety assessment were investigated. After oral dosing, the systemic exposure ratios of CG to vabicaserin were approximately 12 and up to 29 in monkeys and humans, respectively, and the ratios of CG to vabicaserin were approximately 1.5 and 1.7 in mice and dogs, respectively. These differences in systemic levels of CG are likely related to species differences in the rate and extent of CG formation and elimination. Whereas CG was the predominant circulating metabolite in humans and a major metabolite in mice, dogs, and monkeys, it was a relatively minor metabolite in rats, in which oxidative metabolism was the major metabolic pathway. Although the CG was not detected in plasma or urine of rats, approximately 5% of the dose was excreted in bile as CG in the 24-h collection postdose, indicating the rat had the metabolic capability of producing the CG. In vitro, in a CO(2)-enriched environment, the CG was the predominant metabolite in dog and human liver microsomes, a major metabolite in monkey and mice, and only a very minor metabolite in rats. Carbamoyl glucuronidation and hydroxylation had similar contributions to vabicaserin metabolism in mouse and monkey liver microsomes. However, only trace amounts of CG were formed in rat liver microsomes, and other metabolites were more prominent than the CG. In conclusion, significant differences in the extent of formation of the CG were observed among the various species examined. The exposure ratios of CG to vabicaserin were highest in humans, followed by monkeys, then mice and dogs, and lowest in rats, and the in vitro metabolite profiles generally correlated well with the in vivo metabolites.
منابع مشابه
Metabolism of vabicaserin in mice, rats, dogs, monkeys, and humans.
Vabicaserin is a potent 5-hydroxytryptamine(2C) agonist that is currently being developed for the treatment of the psychotic symptoms of schizophrenia. In this study, in vitro and in vivo metabolism of vabicaserin was evaluated in mice, rats, dogs, monkeys, and humans, and the structures of the metabolites were characterized by liquid chromatography/mass spectrometry and NMR spectroscopy. Vabic...
متن کاملIdentification of a novel N-carbamoyl glucuronide: in vitro, in vivo, and mechanistic studies.
1-[4-Aminomethyl-4-(3-chlorophenyl)-cyclohexyl]-tetrahydro-pyrimidin- 2-one, 1, was developed as an inhibitor of dipeptidyl peptidase-4 enzyme. Biotransformation studies with 1 revealed the presence of an N-carbamoyl glucuronide metabolite (M1) in rat bile and urine. N-Carbamoyl glucuronides are rarely observed, and little is understood regarding the mechanism of N-carbamoyl glucuronidation. Th...
متن کاملMetabolism and disposition of novel des-fluoro quinolone garenoxacin in experimental animals and an interspecies scaling of pharmacokinetic parameters.
Garenoxacin is a novel quinolone that does not have a fluorine substituent at the C-6 position in the quinoline ring. Garenoxacin or 14C-garenoxacin was intravenously or orally administered to rats, dogs, and monkeys. Metabolic profiles and pharmacokinetic parameters were investigated focusing on the species differences and the allometric scaling of pharmacokinetic parameters. Garenoxacin was w...
متن کاملDisposition and metabolism of [14C]-levomilnacipran, a serotonin and norepinephrine reuptake inhibitor, in humans, monkeys, and rats
Levomilnacipran is approved in the US for the treatment of major depressive disorder in adults. We characterized the metabolic profile of levomilnacipran in humans, monkeys, and rats after oral administration of [(14)C]-levomilnacipran. In vitro binding of levomilnacipran to human plasma proteins was also studied. Unchanged levomilnacipran was the major circulating compound after dosing in all ...
متن کاملExcretion and metabolism of milnacipran in humans after oral administration of milnacipran hydrochloride.
The pharmacokinetics, excretion, and metabolism of milnacipran were evaluated after oral administration of a 100-mg dose of [¹⁴C]milnacipran hydrochloride to healthy male subjects. The peak plasma concentration of unchanged milnacipran (∼240 ng/ml) was attained at 3.5 h and was lower than the peak plasma concentration of radioactivity (∼679 ng Eq of milnacipran/ml) observed at 4.3 h, indicating...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Drug metabolism and disposition: the biological fate of chemicals
دوره 38 4 شماره
صفحات -
تاریخ انتشار 2010